
Sorular

1. 1995 yılı Amerikan yapımı iki kapılı ve üç kapılı binek motorlu araçlara ilişkin aşağıdaki çoklu bağlanım modellini ele alalım:

 \[Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 D_{4i} + \beta_5 D_{5i} + u_i \]

 Burada:

 - \(Y \) araçın liste fiyatını (1000 dolar),
 - \(X_1 \) motor hacmini (litre),
 - \(X_2 \) yakıt tüketimini (galon/mil),
 - \(X_3 \) araç uzunluğunu (inç),
 - \(D_4 \) 1 ise üç kapılı ve 0 ise iki kapılı olduğunu,
 - \(D_5 \) 1 ise otomatik vitesli ve 0 ise düz vitesli olduğunu

 göstermektedir. SEK yöntemi ile elde edilen bağlanım bulguları aşağıdaki gibidir:
(a) (25 puan) Bağlantı sonuçlarını (1) önsel beklentiler, (2) katsayılar, (3) \(R^2 \) değeri, ve (4) \(F \) istatistiği tabanında dikkatlice yorumlayınız. Katsayı tahminlerini yorumlarken \(p \) veya \(t \) değerlerinden de dikkatlice yararlanmayı unutmayınız.

\[Y = \hat{\alpha}_0 + \hat{\alpha}_1 X_{1i} + \hat{\alpha}_2 X_{2i} + \hat{\alpha}_3 X_{3i} + \hat{\alpha}_4 D_{4i} + \hat{\alpha}_5 D_{5i} + \hat{\alpha}_6 (D_{4i} \times D_{5i}) + \hat{v}_i \]

Yanıt: Model tahminlerine göre, araç fiyatları ile motor hacmi arasında aynı yönlü, yakıt tüketimi ile ise ters yönlü bir ilişki vardır. Motor hacmindeki 1 litrelik artışı karşılık araç fiyatları ortalama olarak 4000 dolar artış göstermektedir. Aracın uzunluğunun ve aracın iki ya da üç kapı olmasını etkisi ise \(\alpha = 0.05 \) için istatistiksel olarak anlamlı değildi. Diğer taraftan, otomatik vites olması araç fiyatını ortalama yaklaşık 4500 dolar yükseltmektedir ve bu fark etkisi istatistiksel olarak da anılmadı. Tüm bu bulgular iktisat kuramı önsel beklentileri ile uyumlu dur. \(0,47 \) büyüklüğündeki \(R^2 \) değeri, modelin bütününün etkisi ile yaklaşık yüzde 47 oranında açıklanabildiğini göstermektedir. \(F = 13.656 \) istatistiği ise modelin bütününün anlamlı olduğunu reddedilemediğini söylemektedir.

(b) (10 puan) Birinci sorudaki model tahminine dayanan aşağıdaki çizelge neyi göstermektedir? Yorumlayınız.

\[
\text{Bağlantıma ait kareler toplamlarını, bunların serbestlik derecelerini, ve serbestlik derecelerine göre ortalamalarını göstermektedir. Bu VARÇÖZ çizelgesi kullanarak bağlanımın bütününün anlamlılığını sınaabilir:}
\]

\[
F = \frac{\text{BKT nın OKT’si}}{\text{KKT nın OKT’si}}
\]

Bu çizelgede hesaplanan \(F = 13.6558 \) değerine \(p = 1.66 \times e^{-9} \) değeri küçük olduğu için bağlanımın bütününün anlamlı olmadığını öne süren sıfır önsavı reddedilir.

(c) (10 puan) Birinci sorudaki modelli temel olarak, \(D_4 \) ve \(D_5 \) arasında var olabilecek karşılıklı etkileşimi de dikkate alan örneklem bağlanım işlevini yazınız.

\[Y_i = \hat{\alpha}_0 + \hat{\alpha}_1 X_{1i} + \hat{\alpha}_2 X_{2i} + \hat{\alpha}_3 X_{3i} + \hat{\alpha}_4 D_{4i} + \hat{\alpha}_5 D_{5i} + \hat{\alpha}_6 (D_{4i} \times D_{5i}) + \hat{v}_i \]
2. (15 puan) Bağlanım yüzeyinin \(\bar{Y}, \bar{X}_2, \bar{X}_3 \) ortalamalarından geçme özelliğinden yararlanarak, \(\bar{Y}_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} \) üçlü bağılman modelinin ortalamalardan sapmalar biçimindeki gösterimini türetiniz.

Yanıt: Bağlanım yüzeyinin \(\bar{Y}, \bar{X}_2, \bar{X}_3 \) ortalamalarından geçtiği bilindiğine göre şuunu yazabiliriz:

\[
\bar{Y} = \bar{\beta}_1 + \bar{\beta}_2 \bar{X}_2 + \bar{\beta}_3 \bar{X}_3
\]

Yukarıdaki denklemi, verili olan \(\bar{Y}_i \) denkleminde üçlü bağılman modelinin sapmalar biçimindeki gösterimini elde ederiz:

\[
\begin{align*}
\hat{Y}_i &= \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \hat{\beta}_3 X_{3i} \\
\bar{Y} &= \bar{\beta}_1 + \bar{\beta}_2 \bar{X}_2 + \bar{\beta}_3 \bar{X}_3
\end{align*}
\]

\[
\hat{Y}_i - \bar{Y} = \hat{\beta}_1 - \bar{\beta}_1 + \hat{\beta}_2 (X_{2i} - \bar{X}_2) + \hat{\beta}_3 (X_{3i} - \bar{X}_3)
\]

\[
\hat{y}_i = \hat{\beta}_2 x_{2i} + \hat{\beta}_3 x_{3i}
\]

3. Dört gözlemlik bir veri setinin \(Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \hat{\beta}_3 X_{3i} + \hat{u}_i \) üçlü bağılman tahmini sonucunda elde edilen \(\hat{Y}_i \) yakıştırılan değerleri ve \(\hat{u}_i \) kalıntıları aşağıda verilmiştir:

\[
\begin{array}{cccc}
i & \hat{Y}_i & \hat{u}_i & \hat{y}_i^2 & \hat{u}_i^2 \\
1 & 3 & -1 & & \\
2 & 4 & -1 & & \\
3 & 5 & +2 & & \\
4 & 6 & 0 & & \\
\hline
\text{Toplam} & 18 & 0 & &
\end{array}
\]

(a) (15 puan) Yukarıdaki çizelgeyi doldurunuz. Daha sonra, buldüğünüz değerlerden de yararlanarak aşağıda verilen VARÇÖZ çizelgesini doldurunuz.

\[
\begin{array}{cccc}
\text{Değişimin Kaynağı} & \text{KT} & \text{sd} & \text{OKT} \\
\hline
\text{Bağlanım} & & & \\
\text{Kalıntılar} & & & \\
\hline
\text{Toplam} & & &
\end{array}
\]
TOBB - Ekonomi ve Teknoloji Üniversitesi
İKT351 – Ekonometri I, Dönem Sonu Sınavı

Yanıt:

<table>
<thead>
<tr>
<th>i</th>
<th>\hat{y}_i</th>
<th>\hat{u}_i</th>
<th>$\hat{\hat{y}}_i$</th>
<th>$\hat{\hat{u}}_i^2$</th>
<th>Değişim Kaynağı</th>
<th>KT</th>
<th>sd</th>
<th>OKT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-1.5</td>
<td>2.25</td>
<td>Bağlanım</td>
<td>5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-1</td>
<td>-0.5</td>
<td>0.25</td>
<td>Kalıntılar</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>+2</td>
<td>0.5</td>
<td>0.25</td>
<td>Toplam</td>
<td>11</td>
<td>3</td>
<td>3.67</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toplam</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) (15 puan) Bağlanımın bütününün anlamlılığini sınamaya yönelik sıfır önsavını ve alamaşık önsavı yazınız, gerekli sınavma istatistiğini hesaplayınız ve ekte verilen F çizelgesinden yararlanarak sonucu anlamlılık düzeyi $\alpha = 0.05$ için değerlendiriniz.

Yanıt: Sıfır önsavı ve alamaşık önsav şöyledir:

$H_0 : \beta_2 = \beta_3 = 0$
$H_1 : \beta_2 \neq 0$ veya $\beta_3 \neq 0$

$$F_{2,1} = \frac{2.5}{6} = 0.417$$

Kritik değer: $F_{2,1}^* = 199.5$

Hesaplanan $F_{2,1} < F_{2,1}^*$ olduğu için, bağlanımın bütününün anlamlı olmadığını sıfır önsavı reddedilmez.

4. (10 puan) İktisat kuramında sıfır noktasından geçen bağlanımın uygun olduğu duruma bir örnek veriniz. Bu modellerde $\sum \hat{u}_i$ kalıntı toplamları ile ilgili ne gibi sorunlar ortaya çıkabilir?

Yanıt: Sıfır noktasından geçen bağlanımın uygun olduğu bazı durumlar şunlardır:

- Sermaye varlığı fiyatlama modeli,
- Milton Friedman’in ‘kalıcı gelir önsavı,
- Maliyet çözümlemesi kuramı,
- Enflasyon oranının para arzındaki değişim ile orantılı olduğunu ileri süren para kuramı çeşitlemeleri.

Bu modellerde kalıntı toplamları sıfır olmayabilir.
<table>
<thead>
<tr>
<th>n (sürekli)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.05$</td>
<td>161,4</td>
<td>199,5</td>
<td>215,7</td>
<td>215,7</td>
<td>215,7</td>
<td>215,7</td>
<td>215,7</td>
<td>215,7</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td>18,5</td>
<td>19,0</td>
<td>19,2</td>
<td>19,3</td>
<td>19,3</td>
<td>19,3</td>
<td>19,3</td>
<td>19,3</td>
</tr>
<tr>
<td>$\alpha = 0.001$</td>
<td>10,1</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Bu çizelge, [sd pay 1 n ∞ 2 12 21 24 30 40 60 120]денilir.

TOBB - Ekonomi ve Teknoloji Üniversitesi
İKT351 – Ekonometri 1, Dönem Sonu Sınavı